• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

River Studies

Extracts from this document...

Introduction

Geography MYP Coursework River Studies Rio Lizandro is a river located in Portugal, near the district of Lisbon, and has an approximate length of 30km. In this coursework, we have to test the hypothesis related to the characteristics of the Rio Lizandro to discover if it is justified. In order to do so, we will have to draw, measure and calculate the data which we are give on four different sites along the river, and thus conclude with an analysis on the relationship between our results and the given hypothesis. Task 2: State the aim of the study. You need to explain the hypothesis and perhaps suggest what you expect to be the outcome referring to Bradshaw's Model River. The aim of this study is to use the given data on the four different sites along the Rio Lizandro to see how its river variables change and compare it to Bradshaw's model. By doing this, we will be able to test the hypothesis and conclude on whether or not it is correct. The Bradshaw Model is a geographical model which illustrates how a river's characteristics differ from the mouth to source, or lower course to upper course, of a river. According to Bradshaw's model, the hypothesis is that "Stream characteristics (i.e. cross-sectional area, discharge, velocity, efficiency, and gradient) ...read more.

Middle

Gradient: 1�. Dist. from Left bank (m) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 Depth (m) 0.0 0.32 0.20 0.16 0.16 0.22 0.27 0.38 0.25 0.20 0.13 0.05 0.23 0.25 0.21 0.12 0.07 0.02 0.0 Velocity measured over 10 metres in the centre of the river flow: Attempt Time in seconds 1st 10 2nd 12 3rd 14 Average time = 10+12+14 = 12 3 Average velocity: 10 / 12 = 0.83m/sec. - Wetted Perimeter: 9.5m - Cross sectional area: Width x Average depth Average depth: 0+0.32+0.20+0.16+0.16+0.22+0.27+0.38+0.25+0.20+0.13+0.05+0.23+0.25+0.21+0.12+0.07+0.02+0 19 = 0.17m 9 x 0.17 = 1.53m2 - Discharge: Cross sectional area x Velocity 1.53 x 0.83= 1.2852m 3/ sec - Hydraulic Radius: Cross sectional area Wetted Perimeter 1.53 / 9.5 = 0.161 = 0.16m Site 4: Foz de Lizandro Gradient: 0�. Distance from left bank (m) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 11.76 Depth (m) 0.00 0.15 0.57 1.35 1.51 1.60 1.51 1.60 1.67 1.00 0.56 0.41 0.00 Time taken for float to travel 10 metres: Left bank 11 secs 10 secs 14 secs Middle 10 secs 10 secs 12 secs Right bank 12 secs 15 secs 13 secs Average time = 35/3 + 32/3 + 40/3 = 11.7 + 10.7 + 13.3 = 35.7 = 11.9 3 3 3 Average velocity: 10 / 11.9 = 0.84m ...read more.

Conclusion

It is for this reason that the halving pattern cannot be taken into consideration if we were predicting the gradient for other sites in other rivers. Nevertheless, the decrease in gradient along the river supports Bradshaw's theory. Essentially, the wetted perimeter means the perimeter of a cross sectional area that is covered with water. Although it is not included in the hypothesis, it however does not show to have any pattern at all. At first, the wetted perimeter shows a decreasing pattern along sites 1 to 2, as it decreases from 16.7 to 16.4 cm. But from sites 2 to 4, the wetted perimeter increases from 16.4cm to 950cm to 1425cm. It may be that the data for site 1 is incorrect and is supposed to be lower, in order to show an increasing pattern for the wetted perimeter from source to mouth. So, overall as stated in the hypothesis, the stream characteristics do change along the course of the river. It is also correct that they are all interconnected. As you can see from the results, the hypothesis stated in the beginning of the coursework is fully correct and the characteristics of Rio Lizandro meet accordingly with what Bradshaw's table shows, as seen in the results and calculations. Hence, stream characteristics all change along the course of the river and they are all interconnected in one way or another. ?? ?? ?? ?? 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Hydrology & Fluvial Geomorphology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Hydrology & Fluvial Geomorphology essays

  1. Hydrology and Fluvial geomorphology. (Q&A)

    whereas riffles are shallower sections with a less efficient channel shape (low hydraulic radius). This means that more energy is required to overcome the friction of the riffles than that of the pools, and in a straight river this means there is an energy imbalance between pools and riffles.

  2. How does the Efficiency and Cross-Sectional Area of a River Change Down Stream?

    8 18.9 5.1 96.39 9 17.1 5.7 97.47 10 23.3 5.8 135.14 11 17.2 8.9 153.08 12 25.7 10.1 259.57 Fig. 6. Cross-Sectional Area table In figure 6, I have shown the cross-sectional area of the river at all twelve sites.

  1. 'To what extent does the River Lyn conform to the Bradshaw model of River ...

    There was a difficulty in trying the keep the tape steady due to the flow of the River and the wind. 11/11/02 7, A, B, C Wetted perimeter String To help to see if the River Lyn conforms to the Bradshaw model Measured with string and following the Riverbed, then the string was measured.

  2. Geography Coursework: Epping Forest

    Hydraulic radius is calculated using this method: Hydraulic Radius = Cross-sectional Area (m2) = 0.19 = 0.186m Wetted Perimeter (m) 1.02 Channel Cross-section diagrams The cross-sectional area diagrams are linked to the hypotheses the width of the river channel will increase and the depth of the river channel will increase with distance downstream.

  1. This project will study about the way the river Conwy in north Wales changes ...

    MEASUING THE SIZE OF THE STONE: 1) There are peaks, which result in slippery. 2) Marsh, bushes disturb us from picking stones. 3) There are some big rocks eventually we cannot carry and measure. How can I improved? a) Doing more samples b)

  2. The river Gwaun: Investigating how the course of the river changes from the source ...

    It wasn't too easily affected by the wind and depended nearly completely on the river. We did a distance of 10 metres because it doesn't take too long to measure and because many other people were doing measurements we needed an area that didn't take up lots of room.

  1. My hypotheses are:The character of the course of the River Bollin will change along ...

    of the powers roundness index * Metre ruler * Cork and stop watch for velocity * Pencils and pens * Clinometer to measure inclination (slope/gradient) Site 1, Macclesfield Forest After driving for a long time uphill through narrow old roads and villages, we passed reservoirs and lakes as we made our ascent to the forest.

  2. Edexcel Geography B Unit 3 Coursework

    * Relies on the subjective views of the surveyor. * Difficulty of measuring width, so accuracy is always a problem. Cross-sectional area (m�) Calculation The average depth (metre ruler) x the average width (measuring tape) Looks at the area of water at a specific channel point within a river.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work