• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Electrical Energy Questions and Answers

Extracts from this document...

Introduction

Electrical Energy in the Home:

  1. One of the main advantages of electricity is that it can be moved with comparative ease from one place to another through Electric Current.
  • Describe the behaviours of electrostatic charges and the properties of the fields associated with them
  • Electric charges are associated with sub-atomic particles
  • Electric fields surround electric charges such that another electric field placed within that field will experience a force
  • Two types of charges: Positive (Protons) and Negative (Electrons)
  • Two like charges will repel but opposite charges will attract
  • + and – charges are usually able to affect neutral objects
  • Define the unit of electric charge as the coulomb
  • The unit of measuring charge is the coulomb (C)
  • The coulomb itself is a large unit such that one coulomb of charge is equivalent to the magnitude of the charge carried by 6.24 X 10 18 electrons
  • Therefore the magnitude of a charge carried by an electron is    16.24 ×1018  C
  • The charge for one electron is -1.602 X 10-19 C
  • The charge for one proton is +1.602 X 10-19 C
  • Describe the behaviour of electrostatic charges and the properties of the fields associated with them
  • Define the electric field as a field of force with a field strength equal to the force per unit charge at that point E=Fq
  • An electric field is a region in which a charged particle will experience a force
  • An electric field is a vector quantity, which means it must have both magnitude and direction
  • Strength of an electric field at any point is defined as the size of the electric force action on a unit of charge
  • Direction of an electric field at any point is defined as the direction of the force on a positive charge when placed at this point
  • Present diagrammatic information to describe the electric field strength and direction
  • Although an electric field is a region of influence, it is represented though lines, when using line to represent electric fields, the following applies:
...read more.

Middle

  • Describe electric potential different (voltage) between two points as the change in potential energy per unit charge moving from one point to the other (joules/coulomb or volts)
  • In order to move the charges, energy is required. This energy is known as voltage or potential difference in the context of electricity
  • Differing from gravitational potential energy, as seen in the analogy, electric potential energy difference or voltage takes into account the size of the charge. Unlike energy, which is measured in joules, potential difference or voltage in electricity is measured in JC-1 or volt (V)
  • 1 V = C-1
  • There are two important facts in relation to the definition of voltage:
  • A power source, such as a battery, is the most common supply of voltage, the negative terminal of the power source is said to have zero energy. Therefore, the voltage is equal to the electric potential energy of the positive terminal
  • Only positive charges move down the electric potential gradient
  • Voltage or potential difference is defined as the change in energy when one unit of
...read more.

Conclusion

Mathematically:
  • Describe qualitatively how each of the following affects the movements of electricity through a conductor: length, cross-sectional area, temperature, material
  • Resistance varies between different materials, four factors affect this
  • The length of the conducting material:
  • Resistance is directly proportional to the length of the conducting material, the longer the material, the higher the resistance.
  • This is because the longer the material, the higher chance of electrons colliding with the lattice (arrangement of atoms for most conducting materials), This impeded their movement making it difficult to pass through.
  • Cross-sectional area of the conducting material:
  • Resistance is inversely proportional to the cross sectional area of the conducting material
  • A smaller cross section area will make it difficult fro electrons to move through the material and they have more chance of colliding with the lattice
  • Temperature:
  • Temperature of the material is directly proportional to Resistance of the material
  • This is because as the temperature rises, the lattice will vibrate therefore increases the probability of collisions between electrons and the lattice
  • Types of Material:
  • Some conducting materials have more free electrons per unit volume then others that are available to carry electricity and pass through the lattice
  • Therefore the amount of free electrons per unit volume is inversely proportional to resistance of the material.
...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. eletrical dc motors

    given by the ratio of the number of secondary turns to the number of primary turns. By appropriate selection of the number of turns, a transformer thus allows an alternating voltage to be stepped up Transformers come in a range of sizes from a thumbnail-sized coupling transformer hidden inside a

  2. Heating Effect of a Electrical Current

    Safety: This experiment is not very dangerous. As long as I don't let the water contact the power pack directly, nothing dangerous will occur. Also, because I am carrying out this experiment on a computer simulation, there will not be any dangerous situations I will encounter.

  1. Investigating how temperature affects the resistance in a wire

    can drop quicker than at lower temperatures (where the temperature difference is less). To represent this opening for inaccuracy, I have used x-axis error bars on the results with an error amount of 5% of the value (temperature for that result).

  2. Choosing a light source

    Also the further distance the light source an object the less brightness observed. For period: 1, 2 and 3 I will be carrying out my investigation using the same method. I will also be investigating two different light sources in period 1 & 2.

  1. Investigating Electricity.

    points, and the will become more noticeable when I draw up a growth curve. Light Bulb Table: Volts Milliamps Amps (Current) 0v 0mA 0.00A 1v 0.52mA 0.0052A 2v 1.10mA 0.0110A 3v 1.92mA 0.0192A 4v 2.67mA 0.0267A 5v 3.21mA 0.0321A 6v 3.98mA 0.0398A 7v 4.56mA 0.0456A 8v 5.42mA 0.0542A 9v 6.25mA

  2. The strength of an electromagnet.

    The iron core would then be a magnet. An iron core acting as a magnet looks like this: When you switch off the current, the domains would no longer be under the influence of an external magnetic field and the n the domains would begin to return to their original

  1. How does the length of a conductor affect the current flowing through it?

    electrons in the atom shell don't know which atom nucleus they belong to. A conductor cloud of electrons floating through the structure therefore a conductor is able to carry electrical energy when connected to a circuit. Insulators In an insulator the atoms are arranged much further apart so the outer

  2. Geothermal energy is not easily accessible with our current technology. Our main focus was ...

    occurs in the mantle and that is a depth that current technology cannot yet reach. Also, disrupting the forces acting upon the already moving rocks could cause disruptions in the tectonic plates which would then lead to possible outbreaks of earthquakes.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work