• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Exploring the characteristics of a sensor

Extracts from this document...

Introduction

Exploring the characteristics of a sensor

AIM:

The aim of my experiment is to measure the resistance of a thermistor at temperatures which are acceptable by the human body. I can then use this information to create a sensor that can be placed in a bath to record the temperature. This will be beneficial to people who cannot feel the temperature of bath water such as a person who has suffered from a stroke.

RESEARCH

To be able to do my experiment successfully I needed to find out a suitable temperature range to test on.  I found out that the human body tolerates temperatures from 25˚C to 45˚C. image00.png

I also decided to research thermistors. There are two kinds of thermistors; these depend on the sign of the resistance. If the resistance is positive, the resistance increases with the temperature and is called positive temperature coefficient (PTC) thermistor. If the sign is negative, the resistance decreases as the temperature increases. This is called a negative temperature coefficient (NTC) thermistor.  

VARIABLES

For my experiment to be a success I must make it a fair test.

...read more.

Middle

 – This will be connected in my circuit so I can measure the temperature of my circuit. The kind of thermistor I use will be kept the same to ensure a fair test1M wire – this will be connected to the meter bridgeGalvanometer – this measures the potential difference in my circuit. When the galvanometer is at 0 it means the two resistances are equal to each otherPower supply – I will use the same power supply at the same voltage to make it a fair test. Resistor – The resistor I use will be dependent on the reading from the multi meterThermometer – I will use a thermometer to measure the temperature of the water in the beaker. I will make sure the water is at the correct temperature before conducting my experimentWater – the water will be heated up using a Bunsen burner, I will then allow it to cool until it reaches the temperature I wish to measure. The amount of water I use will also be kept the sameBeaker – I will use a beaker to contain the water.
...read more.

Conclusion

>

41

61.0

39.0

0.95

30˚C

69

64

63

31

36

37

65.3

34.6

0.79

35˚C

71

70

72

29

30

28

71.0

29.0

0.61

40˚C

75

73

74

25

27

26

74.0

26.0

0.52

45˚C

79

78

79

21

22

21

78.6

21.3

0.40

50˚C

82

83

82

18

17

18

82.3

17.6

0.32

So I predict that as heat enters the thermistor the electrons subsequently can move around and become free, the current will then increase as the electrons flow around the circuit and the resistance will decrease as more energy is supplied to it. The Voltage should not increase or decrease by more than 0.2V and I expect that the current will increase proportionally until the experiments end.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    After this is down the test tube will be filled up with oil until it covers the thermistor but being careful not to put too much in it because this is not economical and is at risk of spilling or boiling over.

  2. For my sensor project coursework I will be investigating a thermistor.

    Resistance Temperature Detectors (RTDs) are usually wire wound components, but can be made from a thin film as well. They work on the principal that when wire becomes hotter, its resistance increases. I could use a RTD in my sensor, but I do not have easy access to them so

  1. Test how a thermistor reacts to temperature. Also how the results compare to the ...

    Because of their properties companies can add various amounts of -type to make the semiconductor the way they want. Thermistors are semiconductors that use the principle of heat conversion into energy to change the resistance value. Potential Divider: Vo = Vs � R2 R1 + R2 A voltage divider consists

  2. In this investigation I want to look into how a thermistor works, then experiment ...

    water into a beaker and place the instrument into the water. I am using a small amount of water because it will cool faster so I don't have to wait as long for the results, also I am not being exactly precise with the amount of water because I think

  1. Making a Sensor

    cube because it is the same all the way around, so when it is tilting the wind is still striking the same area. So I finally settled on an 8cmx8cmx8cm cube of card, (open at one end) this would allow me to very close to the maxima (where no wind would collect in the vane)

  2. Making, Calibrating and Testing a Sensor

    terms of how the experiment was conducted would be to take the measurements either within a garage or inside a cardboard box which would better simulate a garage. I would also mount the light at the back of the box again to give more realistic results.

  1. Experiments with a thermistor

    * Despite the use of a cardboard 'wall', there would still be external forces acting on the apparatus such as light from the laboratory ceiling lamps; therefore the readings recorded may not be totally accurate. This error can be minimised by performing the experiment in a dark room, where the air is still and light is absent.

  2. physics sensor coursework

    = VA - VB VA = VB + p.d. VA = 1.64 + p.d. Finally I can work out the resistance by rearranging the potential divider equation: V1 = (V R1)/ (R1 + R2) V1 (R1 + R2) = V R1 V1 R1+ V1R2 = V R1 V1 R2 = V R1 - V1 R1 V1 R2 = R1 (V - V1)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work