• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Measuring Internal Resistance

Extracts from this document...

Introduction

Measuring Internal Resistance I am going to do an experiment to measure the internal resistance of different power sources. The different sources I am going to measure the internal resistance of are dry cells, a solar panel, a car battery and a power pack. The apparatus I am going to use are a voltmeter, an ammeter, a variable resistor, power source and a floodlight to power the solar cell. ...read more.

Middle

To avoid this happening I am going to keep the resistance quite high. To improve accuracy with the dry cell I am going to use 4 dry cells and take the average, also with all the sources I am going to try and get a wide range of results at least 7 measurements for each. ...read more.

Conclusion

I will then draw a best-fit line so that I can work out the internal resistance by calculating the gradient. The gradient shows me the internal resistance because: Lost p.d./current = internal resistance I have shown below how this is true: The line AB represents the lost p.d. and the line BC represents the current. The line AC shows AB/BC, which is the same as the internal resistance. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. In this experiment, we will measure the e.m.f. and the internal resistance of a ...

    On top of that, the connecting joints of the cells had rusts on it, it may affect the conductivity of the current and the resistance of whole set-up will increase. As the conductivity is decreased, the e.m.f measured by the voltmeter is not accurate and may be smaller than the expected.

  2. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    .063 .042 .029 .020 .014 .011 .009 .007 .006 .113 .092 .077 .063 .042 .029 .020 .014 .011 .009 .007 .006 Average readings: Resistor (ohms) Average voltage (V) (+- 5%) Average Current (mA) (+- 5%) 12 15 18 22 33 47 68 100 120 150 180 220 1.38 1.39 1.40

  1. Investigation On The Resistivity Of Apples. Since we are measuring the resistance of an ...

    To reduce this we will only cut the apples before measuring its resistance. This might improve the results by making sure that the apples are still fresh and full of moisture when it is being measured. Also while we were conducting our preliminary trial, we discovered that the resistance for one slice of apple varied.

  2. Free essay

    Finding the internal resistance of a solar cell

    This is because as the resistance of the load changes the voltage and current of the circuit change but the internal resistance doesn't so the precision of the experiment will be increased because of the increased range of readings. The conditions that vary are the external light source level of

  1. Investigating Internal Resistance

    Wires: The wires used are made of copper with plastic insulation. The plastic insulation comes in a variety of different colours so different component links can be easily identified. Variable Resistor: A larger component made of many coils of wire.

  2. The experiment involves the determination, of the internal resistance of a cell.

    R in the circuit was varied to see what effect it has upon the balance length L to take trial readings of R and l these trial results are shown in the table below: R/? L/m 1/L (m-1) 1/R (?-1)

  1. Find The Internal Resistance Of A Power Supply

    As the current flowing through the power supply increases, the lost volts will increase. If the current decreases, then the lost volts also decreases until the current is zero. At this point, the potential difference across the terminals of the power supply will be equal to its EMF.

  2. Coursework To Find The Internal Resistance Of A PowerSupply

    From Kirchhoff's second law we know that: E = IR + Ir (1) Where E is the Electromotive Force (EMF) of the power supply, maximum energy per unit charge that the power supply can deliver. R is the external (load) resistance. And I is the current flowing through the circuit.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work