• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7

# Using a sensor to measure an angle.

Extracts from this document...

Introduction

Using a sensor to measure an angle A potentiometer or potential divider is a device, which can be used to measure certain type of data. It consists of a moving contact, which can pass along a surface of high resistance. When it does this the resistant output changes and as a result this can be used to measure things, such as distances or angles, as long as the device can be applied to either a rotary potentiometer or liner potentiometer. Current I = V/R V=voltage R= resistance I have researched that radio and hi-fi systems rely on potentiometers to adjust volume levels. On an old radio there is often a scratchy sounds as you turn the volume knob. This is because the signal from the radios is controlled by tapping off part of it with a sliding contact moving along the surface of high resistance. It works by having the signal from the radio - a varying potential difference - across the whole resistance, but the signal to the speaker is then taken from across only a part of the whole resistance. The scratchy noise on an old radio may come from dirt on the surface of high resistance, which briefly spoils the contact as the slider moves. ...read more.

Middle

However I then realized that my sensor had slipped slightly making my results in accurate. I then re-adjusted my equipment and took down the results again. This time it was clear to see a positive and similar measure of results. Its is clear to see that from my results I managed to achieve constant readings between to angle of 40 and 160 with a difference of 20 volts of each change of 10 degrees making it a very measure reading. Between 0 and 20 I was un-able to achieve a reading this is most likely because the high resistance wire within the device was no longer in contact with the sliding contact. As a result the circuit was incomplete so I got no reading. From looking at the graph I have drawn it is easy to see a correlation between voltage and degrees. Between 1.4 and 3.9 volts I have come up with a formula of (2.8 - the voltage reading) x 50 to give you the angle of degrees from vertical. Therefore you are now able to tell at what angle you have pivoted the device by looking at the voltage reading then reading the angle off the graph or by calculating it using the formula. ...read more.

Conclusion

One major thing I would like to have improved with my experiment and result was the amount of possible human error. Though I a class room this is hard to avoid I believe I could have taken a lot more measurements to check my results. Though all together I believe the experiment went well and my results are good reflections of that. In conclusion, I have managed to construct a calibration graph that would enable me to work out the angle at which an object is leaning by knowing the voltage. An example of a device like this being used in commercial industry or construction could be at the top of cranes or tall buildings. Current uses of devices similar to this are likely to be found at the top of tall skyscrapers to measure the amount of sway due to wind. In modern skyscrapers they are now linked up computer that in turn is linked up with counterbalancing weights that try to prevent excess lean. If the builds where to lean to much then they would be likely to put the structure under to much stress and as a result they may fall over. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Electrical & Thermal Physics essays

1. ## Physics - Rotary Potentiometer

weight handle. One must also be careful of the spring, as it may unexpectedly snap when on a heavy load. Measurement Plan I plan to measure the voltage (potential difference) increase on the multimeter (voltmeter) as weights are loaded on the rotary potentiometer device.

2. ## Objective: l To rectify ...

Waveform of the signal across the resistor displayed on the CRO (waveform D2): Capacitor of 500 �F is used. Waveform of the signal across the resistor displayed on the CRO (waveform D3): Capacitor of 1000 �F is used. Waveform of the signal across the resistor displayed on the CRO (waveform D4): Filter circuit 1100-turn inductor with C-core.

1. ## Making, Calibrating and Testing a Sensor

where the light will be allowed to shine fully on the LDR giving me my maximum value. Then the range will be calculated by taking away the value of the measurement in the dark, from the measurement from the light.

2. ## Sensors cwk. The aim of this coursework is to construct a potential divider circuit ...

The table below shows the results I obtained from the 5 experiments I carried out; I have also worked out the mean time respose on the results. Number of Attempt Time Response (s) 1 1.24 2 1.35 3 1.38 4 1.27 5 1.34 Average Time Response 1.316 The results above

1. ## Physics - Sensor Project

of two resistors one of which is variable and one which is fixed, this is to compare the resistance as the resistance of the sensor changes, this can be shown by using a voltmeter across the resistors. Plan Aim: to calibrate a water level sensor using the main components of

2. ## physics sensor coursework

= VA - VB VA = VB + p.d. VA = 1.64 + p.d. Finally I can work out the resistance by rearranging the potential divider equation: V1 = (V R1)/ (R1 + R2) V1 (R1 + R2) = V R1 V1 R1+ V1R2 = V R1 V1 R2 = V R1 - V1 R1 V1 R2 = R1 (V - V1)

1. ## silicon project

* Medical materials - Silicones are flexible compounds containing silicon-oxygen and silicon-carbon bonds; they are widely used in applications such as artificial breast implants and contact lenses. * LCDs and solar cells - Hydrogenated amorphous silicon has shown promise in the production of low-cost, large-area electronics in applications such as LCDs.

2. ## Find The Internal Resistance Of A Power Supply

Results Setting 2V Voltage1 (volts) Voltage2 (volts) Voltage3 (volts) Average Voltage (volts) Current1 (amps) Current2 (amps) Current3 (amps) Average Current (amps) 1 1.96 1.95 1.97 1.96 0.11 0.11 0.11 0.11 2 1.94 1.94 1.93 1.94 0.18 0.19 0.18 0.18 3 1.93 1.91 1.92 1.92 0.30 0.32 0.29 0.30 4 1.87 1.89 1.86 1.87 0.44 0.40

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to