• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
  26. 26
  27. 27
  • Level: GCSE
  • Subject: Maths
  • Word count: 1273

The fencing problem.

Extracts from this document...


RANG BABATAHER11.1 – Maths Coursework



 In this investigation, I have to find out a farmers problem who needs to build a fence that is 1000m long. I am investigating which shape would give the maximum area with a 1000m perimeter. I will be investigating the properties of a 1000m perimeter fence.

I am going to start by drawing several regular and irregular rectangles, all with a perimeter of 1000m.

All drawings are not to scale.

m = Metres

4 Sided Shapes




To find out an area of a square = base x length

In this case it will be                 = 250m x 250m

                                        = 62500m.




Area = 300 x 200 =image49.png

                                                = 60000m



Area = 350 x 150





Area = 400 x 100





Area = 450 x 50


In a rectangle, any two different length sides will add up to 500m, because each side has an opposite with the same length. That’s why when we look at the triangles above we can see its happening, for example if we look at the 1st which is  

200 x 300 when we add them up it will be 500.

...read more.



I knew that the area of a triangle was image49.png

THE SQUARE ROOT OF: s(s-a)(s-b)(s-c)

Using this formula I could work out the area of an equilateral triangle shaped fence.

* = Multiplied

THE SQUARE ROOT OF (500*(500-333.333…)*(500-333.333…)*(500-333.333…)) = 48112.52245 m

I then tried this formula with an isosceles triangle.image17.pngimage17.pngimage18.png


THE SQUARE ROOT OF (500*(500-400)*(500-400)*(500-200)) =  


When I had worked out this formula I discovered that the two areas that had given the largest areas for 3 and 4 sided shapes had been regular shapes. I wondered if this meant that regular shapes gave the largest areas. I thought that it might have something to do with the lines of symmetry in a shape.


5 Sided Shapes

Once I had worked out the largest areas of the squares and triangles I realised that a shape with the most lines of symmetry had the largest area. This meant that regular polygons would give the largest area, so from now on I will only look at regular shapes.image21.png



I then began to study pentagons. A pentagon is a five sided shape.

...read more.


This meant that my general formula was now 250000:  180

                                                   n               n

However, the formula for a circle involves multiplication, so I had to make my formula

250000 * n    

     n       180

I cAN now cancel out the two n’s, leaving me with the formula

250000 * 180

Then I realised that 250000 was my original r , as my radius was originally 500. This meant that my formula was now

r  * 180

My formula was now beginning to resemble the formula for a circle, but I still had to convert the 180 into π.

I realised that it must involve radians.


A radian is the angle subtended at the centre of the circle by an arc of length equal to the radius.

In radians 360° is equal to 2π. This means that 180° is equal to π, as 180 is half of 360 and π is half of 2π.

I now had my formula

r  * π

Or, in its familiar form

πr , which is the formula for a circle..

In my investigation I discovered that a circle would give the largest area for a fence of 1000m perimeter as it has an infinite number of sides.

I also discovered that the general formula for any n sided polygon is

250000:  tan (180)

n                   n


...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. GCSE Maths Coursework Growing Shapes

    No. of Hexagons 1 1 2 7 3 19 4 37 5 61 D1 D2 As there are all 6's in the D2 column, the formula contains 3n2. Pattern no. (n) 3n2 No. of Hexagons - 3n2 1 1 -2 2 3 -5 3 5 -8 4 7 -11

  2. Geography Investigation: Residential Areas

    and therefore this bar charts results are just because if the intangibles are better people don't want to leave the area. Conversely, the chart shows that Vivaldi Close takes a considerable drop and a total of 4 people don't want to continue living there, on the surveys that the occupants

  1. The Fencing Problem

    If I divide 360 degrees by the number of sides it gives me the angle of one original triangle. I now half this angle to find the angle of the right angled trangle. I can again simplify this so that I do not need to divide by two.

  2. Fencing Problem

    = 500 - 1/2 B We can therefore replace L to the above formula: A = 1/2 x B x V [(500 - 1/2 B) 2- (B2/4)] I will start the Base from 10 m and move upwards. I am hoping to reach to a point where I would obtain a maximum area after which the area starts to decrease.

  1. Fencing problem.

    angles = 3600 � 3 Exterior angles = 1200 Now we can find out the interior angles by doing the following steps: Interior angles = 1800 - Exterior angles Interior angles = 1800 - 1200 Interior angles = 600 Now to find the area of the triangle that has been

  2. Maths Coursework - The Fencing Problem

    Triangle The equilateral triangle is the almost 'the square' of the triangles in that all of the sides have to be the same length, and the angles must all be equal. As with the square, there is only one equatorial triangle with the perimeter of 1000m.

  1. Maths Fence Length Investigation

    = 1/2 X b X H = 1/2 X 71.429 X 148.323 = 5297.260 5297.260 X 14 = 74161.644m2 My predictions were correct and as the number of side's increases, the area increases. Below is a table of the number of sides against area No.

  2. The Fencing Problem

    table of data, this time increasing the base values by an even smaller number; 2. Again, a graph depicting the areas will be displayed after the diagrams. 1) h 350 150 2) h 345 155 3) h 340 160 4)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work