• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Measuring the Resistance of a Wire - Investigation

Extracts from this document...

Introduction

MARK GRAHAM

GCSE SCIENCE

7/1/02                                                           Measuring the Resistance of a Wire – Coursework

PLANNING

Our aim is to investigate how length affects the resistance of a piece of 24 s.w.g (standard wire gauge) Constantan resistance wire. We will do this by measuring the resistance of the wire while seven different lengths, ranging from 40cm to 100cm, of it are connected to a circuit. This is a good range because the points are nicely spaced out down the length of wire, making it easier to identify the point at which the resistance starts to change. We will take seven readings so we can see if there is a pattern emerging in the results both in the results table and the graph.

Resistance wire –Resistance wire has a much higher resistance than copper wire; it is used to make resistors and heating elements for electric fires. They are made of alloys, i.e. mixtures of metals chosen to give high resistance, and are available in different thicknesses. Constantan and Nichrome are typical examples of resistance wire.

Background Knowledge

Resistance is measured indirectly. It is calculated by dividing the Voltage by the Current. Ohm’s law – V = I x Ω. To carry out this investigation accurately, we have to consider the factors, other than length, which affect the resistance of a wire. These factors areheat, length and thickness.

Heat –Resistance is caused by the atoms of a conductor interfering with the flow of the electric charges. As electrons flow through the wire they can collide with atoms, causing friction and heat.

...read more.

Middle

60

0.54

0.43

1.26

50

0.52

0.49

1.06

40

0.49

0.55

0.82

2.14Anomalous reading

Exp. 2 Point/cm

Exp.2 Voltage/V

Exp. 2 Current/A

Exp. 2 Resistance/Ω

100

0.60

0.29

2.07

90

0.59

0.30

1.97

80

0.57

0.34

1.68

70

0.56

0.37

1.51

60

0.54

0.41

1.32

50

0.53

0.47

1.13

40

0.50

0.58

0.84

Exp. 3 Point/cm

Exp. 3 Voltage/V

Exp. 3 Current/A

Exp. 3 Resistance/Ω

100

0.60

0.29

2.07

90

0.59

0.30

1.90

80

0.61

0.28

2.17

70

0.56

0.38

2.00

60

0.55

0.42

1.31

50

0.52

0.49

1.06

40

0.50

0.56

0.89

2.17 Anomalous reading

Exp. 4 Point/cm

Exp.

...read more.

Conclusion

Improvements/Further Investigation

To make the experiment more accurate we could keep the current constant and low to ensure the wire’s temperature also remains constant, therefore lowering the chance of a rise in temperature that might give the wire’s atoms more energy to interfere with the passing electrons. This improved experiment would give better, more precise results, and possibly, depending on what the cause of our anomalous results was, give a straight line on the graph of results.

If I had more time I could conduct more experiments to find out more about the resistance of a wire. I could investigate the effect of temperature by heating the wire. If so, I predict that this will result in a higher resistance due to the heat giving the wire’s atoms more energy to interfere with the passing electrons. I could experiment how the cold affects the resistance, too, but it would be complicated to keep the wire at a constant temperature for a fair test in both experiments. Another experiment I could conduct to find out more is the effect of changing the material from which the wire is made. I already know that better conductors have a lower resistance than poor conductors, so if I did this I would expect a higher resistance with the less good conductors of electricity. This would be a relatively simple experiment to conduct. I would simply have to measure the resistance of each conductor and determine how by altering the material of the wire I have changed it.    

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Draw stress and strain graphs for the metal copper and the alloy constantan. Calculate ...

    4 star(s)

    I have made the scale as large as possible so to show the shape of the curve as large as possible so any anomalous points clearly and it will take advantage of the whole page so to use my resources carefully.

  2. An in Investigation into the Resistance of a Wire.

    This would mean I be able to plot a more accurate graph than the one I done for this experiment. * Instead of using normal ammeter and volt meter use multi meters instead because they give a more accurate reading than the normal ammeters and volt meters.

  1. Resistance of a Wire Investigation

    From my graph on the previous page, I can see that the resistance of the wire is directly proportional to the length of the wire. I know this because the Line of Best Fit is a straight line through the origin showing that if the length of the wire is

  2. Resistance in a Wire Investigation

    When I measure resistance in the length of the wire, I will use 34-gauge wire because this will give me a wider range of readings unlike in the lower gauge wires. Electrons don't 'stick' to the atoms in the metal very well and so there are many free electrons in the metal.

  1. Resistance Investigation

    On the other hand if I use a smaller voltage, I would get smaller readings, making my results inaccurate and the percentage error high. The only thing I am investigating is length and so the variables: * Thickness * Temperature * And material used, have to remain constant, only the length of constantan will vary.

  2. Planning Experimental Procedures

    journey from one end to the other giving opposition or resistance to the electrons. When volt electrons move along the wires they hit atoms which creates heat through friction of the electrons and atoms. Free electrons are attracted towards positive protons in the nucleus.

  1. Find out (through an experiment) how much resistance a piece of copper wire will ...

    * * Material of wire. * Width of wire. * Starting temperature of wire. Output: and thus the resistance of the wire. � * Voltage across wire. * Current in circuit. * Temperature of wire. The variable marked with a * will be varied, the other input variables will be kept constant.

  2. Investigating resistance when altering thickness of wire / length of wire

    Resistance= 1/Area. This can be explained using the formula R = V/I where there is 2X the current, and the voltage is the same, therefore R will halve. I did some research and in a book called 'Ordinary Level Physics' By A.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work