• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Carry out an experiment of simple harmonic motion using a simple pendulum and determine the acceleration due to gravity.

Extracts from this document...

Introduction

SIMPLE HARMONIC MOTION AND THE SIMPLE PENDULUM

Task 1

Aim

To carry out an experiment of simple harmonic motion using a simple pendulum and determine the acceleration due to gravity.

Method

The apparatus is set up as above, the string must be measured accordingly with a ruler carefully to minimize any error.  The pendulum must be in equilibrium position which is central, where the pendulum does not move, as this gives more accuracy in timing the time period which is the time it takes for one complete oscillation.

The pendulum is put into movement by a gentle push, keeping the amplitude small, and the stopwatch is started.

Some practice counting and timing the oscillations may be needed to prepare for the experiment.

20 oscillations are counted and timing is stopped, it is then repeated to give an average time for the 20 oscillations and greater accuracy in the results.

The experiment is repeated 7 more times, with the length of string being increased by 0.1m.

...read more.

Middle

1.10

0.55

0.4

25.1

25.31

25.21

1.26

0.63

0.5

27.94

28.00

27.97

1.40

0.71

0.6

30.44

30.47

30.455

1.52

0.77

0.7

32.44

32.56

32.5

1.63

0.84

0.8

34.91

34.88

34.895

1.74

0.90

Analysis of Results

        The graph is time against length, so using the equation T = 2L/g

The gradient of the graph can be calculated from   ΔΥ    and is equal to  2ΔΧg

ΔΥ  = 1.18    = 1.98

ΔΧ     0.595

1.98 = 2  = 6.2

g      g

g =  6.2   = 3.13

        1.98

g = 3.13²

= 9.8ms²

Conclusion

        The value I obtained for the acceleration of the simple pendulum due to gravity is 9.8ms², which is good.  This shows that the experiment was accurate

...read more.

Conclusion

My graph has a straight line through the origin that does seem to be showing a pattern between the length and time.  As expected the time period increases as length of the pendulum is increased.  All my results are either very close or on the line of best fit showing that there were no serious errors in the experiment.

Task 2

Pendulums provide good time keeping because they perform simple harmonic motion and therefore can always have the same time period irrelevant of their mass.

Grandfather clocks have a time period of 2 seconds.

The length of the pendulum needed can be obtained from the following equation

T = 2L/m

2 = 2L/9.81

  2  = L/9.81

2

(0.32)² = L/9.81

  1. = L/9.81
  1. x 9.81 = L

L = 0.981 m

Task 3

To calculate the maximum amplitude of the oscillations if the mass is not to lose contact with the tray, first the time period must be worked out, by using the following equation.

T = 2m/k

T = 21.3/15Nm¹

T = 20.086

T = 20.3

T = 1.9s

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The Simple Pendulum Experiment

    4 star(s)

    This ruler has a set of marks measured in time, and this is done because we know the acceleration due to gravity (Approximately 9.8 m s -2). Therefore, we can work out the reaction time by holding the ruler above the hand of the person whose reaction time is to be measured, and dropping it.

  2. Determination of the acceleration due to gravity using a simple pendulum.

    100% of gravitational potential energy is converted to kinetic energy, and vice versa. * Gravitational field: This is constant and is being measured in this experiment. The value obtained during the experiment should be 9.81ms-2 to 3 significant figures. Sources of Error * Length of the string: This was measured using a metre ruler.

  1. Determining the acceleration due to gravity by using simple pendulum.

    Simple harmonic motion states that the restoring force is proportional to the displacement. In more simple terms this means the further the bob from the rest position, the more it wanving forces theory. A SIMPLE PENDULUM AIM The aim for this experiment is to determine the acceleration due to gravity using a pendulum bob.

  2. Investigating the period of a simple pendulum and measuring acceleration due to gravity.

    PRECAUTIONS: The measures I should take to obtain accurate results: 1. Make sure the angle is small (1/6 of the average length of the pendulum). 2. Measuring the length. Care should be taken when measuring the length. It should be measured from the centre of the bob to the fixed end.

  1. Period of Oscillation of a Simple Pendulum

    I shall also make comparisons to the theoretical answers put forward by Galileo * Length of pendulum Here, the results are very good, with no anomalous, unexpected results. The results that I had were very accurate except for the lengths of 20 cm and 65 cm, which both suffered the worse scores compared to Galileo's theoretical answer.

  2. The determination of the acceleration due to gravity at the surface of the earth, ...

    The equation doesn't take into account mass, because it doesn't have affect on the period of the pendulum. I will use the same pendulum throughout my experiment nonetheless. As the amplitude of displacement is increased the gravitational potential energy of the bob also increases, because the height is increased.

  1. Experiment to Find Accleration due to Gravity.

    On occasions, a normal force is exerted horizontally between two objects which are in contact with each other. Friction Force, Ffrict The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it.

  2. In this experiment I aim to find out how the force and mass affect ...

    P.E = mhg (where m=mass, h=height and g=gravity) Obviously, the more potential energy the trolley has got, the faster it will move down the ramp. So, theoretically, the only factors that can affect this experiment are the height and the mass and the gravity. Since we can only possibly conduct this experiment on Earth, the gravity will always

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work