Sir Isaac Newton.

Isaac Newton's life can be divided into three quite distinct periods. The first is his boyhood days from 1643 up to his appointment to a chair in 1669. The second period from 1669 to 1687 which was the highly productive period in which he was a professor at Cambridge University. The third period (nearly as long as the other two combined) saw Newton as a highly paid government official in London with little further interest in mathematical research. Isaac Newton was born in the manor house of WoolsThorpe, near Grantham in Lincolnshire. By the calendar in use at the time of his birth he was born on Christmas Day 1642. Isaac Newton came from a family of farmers but never knew his father, also named Isaac Newton. Although Isaac's father owned property and animals, which made him quite a wealthy man, he was completely uneducated and could not sign his own name. Isaac's mother Hannah Ayscough remarried Barnabas Smith the minister of the church at North Witham, a nearby village, when Isaac was two years old. The young child was then left in the care of his grandmother Margery at Woolsthorpe. Basically treated as an orphan, Isaac did not have a happy childhood. His grandfather James was never mentioned by Isaac in later life and the fact that James left nothing to Isaac in his will, made when the boy was ten years old, suggests that there was no love lost between the two. There is

  • Ranking:
  • Word count: 1743
  • Level: AS and A Level
  • Subject: Science
Access this essay

The Electro magnetic spectrum.

The Electro magnetic spectrum. By Steve Wyers 11cu Radio Waves Radio waves are made by various types of transmitter, depending on the wavelength. They are also given off by stars, sparks and lightning, which is why you hear interference on your radio in a thunderstorm. Radio waves are the lowest frequencies in the electromagnetic spectrum, and are used mainly for communications. Radio waves are divided into:- Long Wave, around 1~2 km in wavelength. The radio station "Atlantic 252" broadcasts here. Medium Wave, around 100m in wavelength, used by BBC Radio 5 and other "AM" stations. VHF, which stands for "Very High Frequency" and has wavelengths of around 2m. This is where you find stereo "FM" radio stations, such as "Galaxy 101" and "GWR FM". Further up the VHF band are civilian aircraft and taxis. UHF stands for "Ultra High Frequency", and has wavelengths of less than a metre. It's used for Police radio communications, military aircraft radios and television transmissions. Large doses of radio waves are believed to cause cancer, leukaemia and other disorders. Some people claim that the very low frequency field from overhead power cables near their homes has affected their health. Microwaves Microwaves are basically extremely high frequency radio waves, and are made by various types of transmitter. In a mobile phone, they're made by a transmitter chip and an antenna,

  • Ranking:
  • Word count: 1860
  • Level: AS and A Level
  • Subject: Science
Access this essay

AS OCR B Advancing Physics Coursework - Making Sense of Data

AS Physics Coursework - Making Sense of Data An experiment was carried out in which the velocity of a falling mass was measured using a light gate: The results are shown in the table below: Height Above Light Gate (mm) Velocity #1 (m/s) Velocity #2 (m/s) Velocity #3 (m/s) 20 0.61 0.62 0.51 70 .12 .11 .10 20 .52 .62 .50 70 .76 .72 .79 220 .93 2.03 .99 270 2.26 2.28 2.30 320 2.45 2.50 2.46 370 2.62 2.67 2.63 420 2.84 2.80 2.89 470 2.96 2.97 2.99 520 3.18 3.13 3.20 570 3.30 3.44 3.34 620 3.53 3.53 3.40 670 3.62 3.64 3.67 720 3.84 3.62 3.83 770 3.86 3.84 3.83 820 4.03 3.97 3.99 870 4.18 4.12 4.14 920 4.36 4.41 4.20 Provided with these results I have initially decided to look at any relationship between the actual figures collected, with the plan of calculating and exploring further data later. I am therefore looking at the relationship between the distance the object fell, and its velocity as it passed through the light gate. An average of the velocities measured in each experiment has been calculated and the height at which the weight was dropped has been multiplied by 1000 to convert it to metres. I have created a graph of these values. Distance fallen /m Average Velocity/ ms-1 0.02 0.58 0.07 .11 0.12 .55 0.17 .76 0.22 .98 0.27 2.28 0.32 2.47 0.37 2.64 0.42 2.84 0.47

  • Ranking:
  • Word count: 2432
  • Level: AS and A Level
  • Subject: Science
Access this essay

Wave Coursework

Physics Coursework Plan Investigating how the velocity of water waves depends on the depth of water Background knowledge Speed (V/ms-¹) = distance (D/m) ÷ time (T/s) Using this equation I can calculate the speed at which the water wave travels at. The deeper the water, the faster the water wave travels Aim I am going to investigate how the velocity of water waves varies on the depth of the water and will find the relationship between these two variables. Prediction/Hypothesis I believe that when the depth of the water is increases the velocity of the water waves will increase in proportion. Average speed = distance ÷ time Apparatus * Tray * Support stand * Stop watch * Ruler * Water Diagram Variables and constants The only variables of this experiment are to be: * The depth of the water * The velocity of the waves The quantites which will remain constant are: * The temperature of the liquid * The type of liquid * The height at which the tray is lowered from * The number of waves recorded * The same tray is used To ensure a fair experiment, I will record my results 3 times. This will also increase the reliabilty of my results. I will then be able to work out an average, removing any error results out of limit. Before taking any readings of the wave velocity I will measure the length and width of the tray and also see if the tray is flat on the

  • Ranking:
  • Word count: 1223
  • Level: AS and A Level
  • Subject: Science
Access this essay

What affects the voltage output of a solar panel?

What affects the voltage output of a solar panel? Planning Aim The aim of the investigation is to find out how the distance between a light point source and a photovoltaic cell affects the output potential difference. Hypothesis I predict that the further the distance, the smaller the output potential distance Inverse square law for light intensity (Taken from the website - http://hyperphysics.phy-astr.gsu.edu/hbase/vision/isql.html#c1) "Inverse square law for light intensity against distance: As the distance between an observer and a light source increases, the observable brightness decreases with d-2. Light spreads out over an increasing area of space to decrease apparent brightness. (Figure 1.1) Figure 1.1 (http://www.astrosociety.org/education/publications/tnl/32/images/fig5.gif) Because, Pin is proportional to area-1 and area is proportional to distance2, therefore Pin is proportional to distance-2 (figure 1.2). This supports my prediction that the output potential difference will be much smaller when the distance between the point source and the PV cell increases. Of course, my hypothesis assumes 100% efficiency and no influence from background light and other factors that may affect the experiment in anyway. .2 Prediction of outcome (Pin ? distance-2) Apparatus list The list of apparatus to be used is: Ray box Used as the point source to emit light

  • Ranking:
  • Word count: 3350
  • Level: AS and A Level
  • Subject: Science
Access this essay

Astronomy - the urge to explore space.

Astronomy Astronomy has been a very interesting subject for every generation of mankind. From ancient Greeks to the modern astronomers, everyone has tried to explore the space probably due to the urge to discover space and find everything. The urge to explore space did not start lately but this has been passed on from generations of human beings. Some civilisations expressed the deep beauty and the attraction of the shining stars and their constellations in the space above them by worshipping them; whilst others made buildings based upon constellations of stars. A few ancient buildings in the deep and dense tropical forests that have been observed by archaeologists recently caught an astronomer's eye as something other than just an old building. He noticed that the way the building was designed exactly identical to a constellation present in the sky. When studied in detail, it was discovered that the building's door and the main door were exactly the same distance as two stars of the constellation from each other when they were looked at from the naked eye. It was also found out that the building door and the main door were at an angle of 20°. Astonishingly, this is the exact angle that the same two stars of the constellation had on each other. Until the 11th century the truth about the stars was unknown and there were just a few theories of Ancient Greeks. In the 11th

  • Ranking:
  • Word count: 1303
  • Level: AS and A Level
  • Subject: Science
Access this essay

Black Holes Research and Report

Contents Page number 3 What is a Black Hole? Black Hole anatomy 4 Types of Black Hole 5 Event horizon radius 6 Mass of a black hole 7 Hawking radiation 8 What happens when Black Holes Collide? Gravitational lensing 10 Einstein rings Evaluation 11 References Black Holes By doing this assignment I aim to gain a better understanding of the physics behind Black Holes What is a Black Hole? To understand a black hole, you must first have an understanding of gravity in space. Imagine yourself on a trampoline; you make an indentation in the trampoline fabric. If someone was to roll a ball past you on the trampoline, it would begin to spiral towards you, down into the indent you have made. This is very similar to the way gravity works in space and time. The 'fabric of spacetime' is an imaginary mesh running through space (see right) which can be deformed and warped by the gravity of stars and planets. This is the principle upon which black holes work. A black hole essentially is an incredibly compact body which has warped space-time enough to make any escape from the force of gravity impossible. They are thought to be at the centre of galaxies, including our own Milky Way. As the name implies, a blackhole cannot emit or reflect any light; making them practically invisible. If enough mass is concentrated into a small enough region, the curvature of

  • Ranking:
  • Word count: 2181
  • Level: AS and A Level
  • Subject: Science
Access this essay

The Compound Pendulum

The Compound Pendulum Task: * To confirm that a metre rule behaves as a compound pendulum when oscillating; * To determine the acceleration due to gravity using a compound pendulum. Planning: Sources used in research of the above tasks are: . A Text-Book of Practical Physics - William Watson; page 129 2. Laboratory Physics - JH Avery & AWK Ingram; page 69 3. Intermediate Physics - CJ Smith; page 50 4. The Text-Book of General Physics - GR Noakes; page 394 5. Intermediate Mechanics - D Humphrey; page 60 6. Introduction to Physics for Scientists and Engineers (Second Edition) - Frederick J. Bueche; page 222 7. http://www.physics.mun.ca/~cdeacon/labs/simonfraser.pdf 8. http://hyperphysics.phy-astr.gsu.edu/hbase/pend.html 9. http://en.wikipedia.org/wiki/Acceleration_due_to_gravity 0. http://geophysics.ou.edu/solid_earth/notes/potential/igf.htm 1. http://www.gorissen.info/Pierre/maps/googleMapLocationv4.php 2. http://en.wikipedia.org/wiki/Reaction_time Where direct quotation is made from a source, the source number is shown in superscript after the preceding italicised quote, e.g. 'quote' 4 . The compound pendulum is defined as: 'a rigid body of any shape and internal structure which is free to turn about a fixed horizontal axis, the only external forces being those due to gravity and the reaction of the axis on the body' 3. In this investigation a wooden

  • Ranking:
  • Word count: 1972
  • Level: AS and A Level
  • Subject: Science
Access this essay

Describe the principles and limitations of transmission and scanning electron microscopes. Specific reference should be made to magnification and resolution

Describe the principles and limitations of transmission and scanning electron microscopes.Specific reference should be made to magnification and resolution Introduction Microscopy has a major role in cytology.From the very beginning researchers have tried to develop ways of looking directly at living cells.This examination has revealed much about the morphology of cells and tissues.In recent years,development in microscopes,dyes,staining and preparatory techniques have helped reveal even more about the structure and function of cells.Microscopes have a certain magnification and resolving power.In any microscope the the resolving power is more important than the magnification.The resolving power of a microscope is the least distance between two objects where the microscope can still distinguish the objects as being separate.It is a measure of detail that can be seen.A microscope with a high resolving power enables us to view images with a high resolution.With a low resolution they would be viewed as one object.Microscopes with a high magnification are only able to increase the size of the object that is being viewed.The resolution will be the same.(ie the object will still lack clarity and appear fuzzy).The two types of microscopes are electron and light microscopes. Principles and Limitations of light microscopy Light microscopes function by focussing a beam of light on

  • Ranking:
  • Word count: 1040
  • Level: AS and A Level
  • Subject: Science
Access this essay

The Principles and Limitations of Electron Microscopy.

The Principles and Limitations of Electron Microscopy. An Electron Microscope is a type of microscope that makes use of a beam of electrons rather than visible light. Which is due to the fact that the wavelength of electrons is much smaller than the wavelength of visible light, an Electron Microscope not only gives a high magnification but it also has high resolution. This means that details can be seen clearly. An Electron Microscope is very similar to a Light Microscope in the ways in which it works but, instead of using glass lenses to focus a beam of light, it uses magnets to focus a beam of electrons. Electrons are very small, so they are scattered if they hit molecules in the air due to this they must travel through a vacuum. Specimens that are to be examined must be cut into very thin sections, and these must be treated so that they can be examined in these conditions. The variety of chemical processes that are carried out in this preparation may change the appearance considerably. Features which have been introduced in this way are known as artefacts and care needs to be taken in interpreting electron micrographs because of the possible presence of artefacts. An examination of a specimen using an Electron Microscope can yield the following information: Topography: The surface features of an object or "how it looks", it's texture; direct relation between these

  • Ranking:
  • Word count: 1160
  • Level: AS and A Level
  • Subject: Science
Access this essay